iaf_cond_alpha
iaf_cond_alpha - Simple conductance based leaky integrate-and-fire neuron model
Description
iaf_cond_alpha is an implementation of a spiking neuron using IAF dynamics with conductance-based synapses. Incoming spike events induce a post-synaptic change of conductance modelled by an alpha function. The alpha function is normalised such that an event of weight 1.0 results in a peak current of 1 nS at \(t = \tau_{syn}\).
References
- 1
Meffin H, Burkitt AN, Grayden DB (2004). An analytical model for the large, fluctuating synaptic conductance state typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16:159-175. DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81
- 2
Bernander O, Douglas RJ, Martin KAC, Koch C (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Science USA, 88(24):11569-11573. DOI: https://doi.org/10.1073/pnas.88.24.11569
- 3
Kuhn A, Rotter S (2004) Neuronal integration of synaptic input in the fluctuation- driven regime. Journal of Neuroscience, 24(10):2345-2356 DOI: https://doi.org/10.1523/JNEUROSCI.3349-03.2004
See also
iaf_cond_exp
Parameters
Name |
Physical unit |
Default value |
Description |
---|---|---|---|
V_th |
mV |
-55mV |
Threshold potential |
V_reset |
mV |
-60mV |
Reset potential |
t_ref |
ms |
2ms |
Refractory period |
g_L |
nS |
16.6667nS |
Leak conductance |
C_m |
pF |
250pF |
Membrane capacitance |
E_exc |
mV |
0mV |
Excitatory reversal potential |
E_inh |
mV |
-85mV |
Inhibitory reversal potential |
E_L |
mV |
-70mV |
Leak reversal potential (aka resting potential) |
tau_syn_exc |
ms |
0.2ms |
Synaptic time constant of excitatory synapse |
tau_syn_inh |
ms |
2ms |
Synaptic time constant of inhibitory synapse |
I_e |
pA |
0pA |
constant external input current |
State variables
Name |
Physical unit |
Default value |
Description |
---|---|---|---|
r |
integer |
0 |
counts number of tick during the refractory period |
V_m |
mV |
E_L |
membrane potential |
Equations
Source code
neuron iaf_cond_alpha:
state:
r integer = 0 # counts number of tick during the refractory period
V_m mV = E_L # membrane potential
end
equations:
kernel g_inh = (e / tau_syn_inh) * t * exp(-t / tau_syn_inh)
kernel g_exc = (e / tau_syn_exc) * t * exp(-t / tau_syn_exc)
inline I_syn_exc pA = convolve(g_exc,exc_spikes) * (V_m - E_exc)
inline I_syn_inh pA = convolve(g_inh,inh_spikes) * (V_m - E_inh)
inline I_leak pA = g_L * (V_m - E_L)
V_m'=(-I_leak - I_syn_exc - I_syn_inh + I_e + I_stim) / C_m
end
parameters:
V_th mV = -55mV # Threshold potential
V_reset mV = -60mV # Reset potential
t_ref ms = 2ms # Refractory period
g_L nS = 16.6667nS # Leak conductance
C_m pF = 250pF # Membrane capacitance
E_exc mV = 0mV # Excitatory reversal potential
E_inh mV = -85mV # Inhibitory reversal potential
E_L mV = -70mV # Leak reversal potential (aka resting potential)
tau_syn_exc ms = 0.2ms # Synaptic time constant of excitatory synapse
tau_syn_inh ms = 2ms # Synaptic time constant of inhibitory synapse
# constant external input current
# constant external input current
I_e pA = 0pA
end
internals:
RefractoryCounts integer = steps(t_ref) # refractory time in steps
end
input:
inh_spikes nS <-inhibitory spike
exc_spikes nS <-excitatory spike
I_stim pA <-current
end
output: spike
update:
integrate_odes()
if r != 0: # neuron is absolute refractory
r = r - 1
V_m = V_reset # clamp potential
elif V_m >= V_th:
r = RefractoryCounts
V_m = V_reset # clamp potential
emit_spike()
end
end
end
Characterisation
Synaptic response

f-I curve
