traub_cond_multisyn

traub_cond_multisyn - Traub model according to Borgers 2017

Description

Reduced Traub-Miles Model of a Pyramidal Neuron in Rat Hippocampus [1]. parameters got from reference [2] chapter 5.

AMPA, NMDA, GABA_A, and GABA_B conductance-based synapses with beta-function (difference of two exponentials) time course corresponding to “hill_tononi” model.

References

See also

hh_cond_exp_traub

Parameters

Name

Physical unit

Default value

Description

C_m

pF

100.0pF

Membrane Capacitance

g_Na

nS

10000.0nS

Sodium peak conductance

g_K

nS

8000.0nS

Potassium peak conductance

g_L

nS

10nS

Leak conductance

E_Na

mV

50.0mV

Sodium reversal potential

E_K

mV

-100.0mV

Potassium reversal potentia

E_L

mV

-67.0mV

Leak reversal Potential (aka resting potential)

V_Tr

mV

-20.0mV

Spike Threshold

refr_T

ms

2ms

Duration of refractory period

AMPA_g_peak

nS

0.1nS

Parameters for synapse of type AMPA, GABA_A, GABA_B and NMDApeak conductance

AMPA_E_rev

mV

0.0mV

reversal potential

tau_AMPA_1

ms

0.5ms

rise time

tau_AMPA_2

ms

2.4ms

decay time, Tau_1 < Tau_2

NMDA_g_peak

nS

0.075nS

peak conductance

tau_NMDA_1

ms

4.0ms

rise time

tau_NMDA_2

ms

40.0ms

decay time, Tau_1 < Tau_2

NMDA_E_rev

mV

0.0mV

reversal potential

NMDA_Vact

mV

-58.0mV

inactive for V << Vact, inflection of sigmoid

NMDA_Sact

mV

2.5mV

scale of inactivation

GABA_A_g_peak

nS

0.33nS

peak conductance

tau_GABAA_1

ms

1.0ms

rise time

tau_GABAA_2

ms

7.0ms

decay time, Tau_1 < Tau_2

GABA_A_E_rev

mV

-70.0mV

reversal potential

GABA_B_g_peak

nS

0.0132nS

peak conductance

tau_GABAB_1

ms

60.0ms

rise time

tau_GABAB_2

ms

200.0ms

decay time, Tau_1 < Tau_2

GABA_B_E_rev

mV

-90.0mV

reversal potential for intrinsic current

I_e

pA

0pA

constant external input current

State variables

Name

Physical unit

Default value

Description

V_m

mV

-70.0mV

Membrane potential

V_m_old

mV

E_L

Membrane potential at previous timestep for threshold check

refr_t

ms

0ms

Refractory period timer

is_refractory

boolean

false

Act_m

real

alpha_m_init / (alpha_m_init + beta_m_init)

Activation variable m for Na

Inact_h

real

alpha_h_init / (alpha_h_init + beta_h_init)

Inactivation variable h for Na

Act_n

real

alpha_n_init / (alpha_n_init + beta_n_init)

Activation variable n for K

g_AMPA

real

0

g_NMDA

real

0

g_GABAA

real

0

g_GABAB

real

0

g_AMPA$

real

AMPAInitialValue

g_NMDA$

real

NMDAInitialValue

g_GABAA$

real

GABA_AInitialValue

g_GABAB$

real

GABA_BInitialValue

Equations

\[\frac{ dV_{m} } { dt }= \frac 1 { C_{m} } \left( { (-(I_{Na} + I_{K} + I_{L}) + I_{e} + I_{stim} + I_{syn}) } \right)\]
\[\frac{ dAct_{n} } { dt }= \frac 1 { \mathrm{ms} } \left( { (\alpha_{n} \cdot (1 - Act_{n}) - \beta_{n} \cdot Act_{n}) } \right)\]
\[\frac{ dAct_{m} } { dt }= \frac 1 { \mathrm{ms} } \left( { (\alpha_{m} \cdot (1 - Act_{m}) - \beta_{m} \cdot Act_{m}) } \right)\]
\[\frac{ dInact_{h} } { dt }= \frac 1 { \mathrm{ms} } \left( { (\alpha_{h} \cdot (1 - Inact_{h}) - \beta_{h} \cdot Inact_{h}) } \right)\]

Source code

The model source code can be found in the NESTML models repository here: traub_cond_multisyn.

Characterisation