iaf_cond_beta

iaf_cond_beta - Simple conductance based leaky integrate-and-fire neuron model

Description

iaf_cond_beta is an implementation of a spiking neuron using IAF dynamics with conductance-based synapses. Incoming spike events induce a post-synaptic change of conductance modelled by a beta function. The beta function is normalised such that an event of weight 1.0 results in a peak current of 1 nS at \(t = \tau_{rise\_[ex|in]}\).

References

1

Meffin H, Burkitt AN, Grayden DB (2004). An analytical model for the large, fluctuating synaptic conductance state typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16:159-175. DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81

2

Bernander O, Douglas RJ, Martin KAC, Koch C (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Science USA, 88(24):11569-11573. DOI: https://doi.org/10.1073/pnas.88.24.11569

3

Kuhn A, Rotter S (2004) Neuronal integration of synaptic input in the fluctuation- driven regime. Journal of Neuroscience, 24(10):2345-2356 DOI: https://doi.org/10.1523/JNEUROSCI.3349-03.2004

4

Rotter S, Diesmann M (1999). Exact simulation of time-invariant linear systems with applications to neuronal modeling. Biologial Cybernetics 81:381-402. DOI: https://doi.org/10.1007/s004220050570

5

Roth A and van Rossum M (2010). Chapter 6: Modeling synapses. in De Schutter, Computational Modeling Methods for Neuroscientists, MIT Press.

See also

iaf_cond_exp, iaf_cond_alpha

Parameters

Name

Physical unit

Default value

Description

E_L

mV

-85.0mV

Leak reversal Potential (aka resting potential)

C_m

pF

250.0pF

Capacity of the membrane

t_ref

ms

2.0ms

Refractory period

V_th

mV

-55.0mV

Threshold Potential

V_reset

mV

-60.0mV

Reset Potential

E_ex

mV

0mV

Excitatory reversal Potential

E_in

mV

-85.0mV

Inhibitory reversal Potential

g_L

nS

16.6667nS

Leak Conductance

tau_syn_rise_I

ms

0.2ms

Synaptic Time Constant Excitatory Synapse

tau_syn_decay_I

ms

2.0ms

Synaptic Time Constant for Inhibitory Synapse

tau_syn_rise_E

ms

0.2ms

Synaptic Time Constant Excitatory Synapse

tau_syn_decay_E

ms

2.0ms

Synaptic Time Constant for Inhibitory Synapse

F_E

nS

0nS

Constant External input conductance (excitatory).

F_I

nS

0nS

Constant External input conductance (inhibitory).

I_e

pA

0pA

constant external input current

State variables

Name

Physical unit

Default value

Description

V_m

mV

E_L

membrane potential

g_in

nS

0nS

inputs from the inh conductance

g_in__d

nS / ms

0nS / ms

inputs from the inh conductance

g_ex

nS

0nS

inputs from the exc conductance

g_ex__d

nS / ms

0nS / ms

inputs from the exc conductance

Equations

\[\frac{ dg_{in,,d} } { dt }= \frac{ -g_{in,,d} } { \tau_{syn,rise,I} }\]
\[\frac{ dg_{in} } { dt }= g_{in,,d} - \frac{ g_{in} } { \tau_{syn,decay,I} }\]
\[\frac{ dg_{ex,,d} } { dt }= \frac{ -g_{ex,,d} } { \tau_{syn,rise,E} }\]
\[\frac{ dg_{ex} } { dt }= g_{ex,,d} - \frac{ g_{ex} } { \tau_{syn,decay,E} }\]
\[\frac{ dV_{m} } { dt }= \frac 1 { C_{m} } \left( { (-I_{leak} - I_{syn,exc} - I_{syn,inh} + I_{e} + I_{stim}) } \right)\]

Source code

neuron iaf_cond_beta:
   state:
     r integer = 0             # counts number of tick during the refractory period

     V_m mV = E_L              # membrane potential

     # inputs from the inhibitory conductance
     g_in real = 0
     g_in$ real = g_I_const * (1 / tau_syn_rise_I - 1 / tau_syn_decay_I)

     # inputs from the excitatory conductance
     g_ex real = 0
     g_ex$ real = g_E_const * (1 / tau_syn_rise_E - 1 / tau_syn_decay_E)
   end

   equations:
       kernel g_in' = g_in$ - g_in / tau_syn_rise_I,
              g_in$' = -g_in$ / tau_syn_decay_I

       kernel g_ex' = g_ex$ - g_ex / tau_syn_rise_E,
              g_ex$' = -g_ex$ / tau_syn_decay_E

       inline I_syn_exc pA = (F_E + convolve(g_ex, spikeExc)) * (V_m - E_ex)
       inline I_syn_inh pA = (F_I + convolve(g_in, spikeInh)) * (V_m - E_in)
       inline I_leak pA = g_L * (V_m - E_L)  # pA = nS * mV
       V_m' =  (-I_leak - I_syn_exc - I_syn_inh + I_e + I_stim ) / C_m
   end

   parameters:
     E_L mV = -70. mV              # Leak reversal potential (aka resting potential)
     C_m pF = 250. pF              # Capacitance of the membrane
     t_ref ms = 2. ms              # Refractory period
     V_th mV = -55. mV             # Threshold potential
     V_reset mV = -60. mV          # Reset potential
     E_ex mV = 0 mV                # Excitatory reversal potential
     E_in mV = -85. mV             # Inhibitory reversal potential
     g_L nS = 16.6667 nS           # Leak conductance
     tau_syn_rise_I ms = .2 ms     # Synaptic time constant excitatory synapse
     tau_syn_decay_I ms = 2. ms    # Synaptic time constant for inhibitory synapse
     tau_syn_rise_E ms = .2 ms     # Synaptic time constant excitatory synapse
     tau_syn_decay_E ms = 2. ms    # Synaptic time constant for inhibitory synapse
     F_E nS = 0 nS                 # Constant external input conductance (excitatory).
     F_I nS = 0 nS                 # Constant external input conductance (inhibitory).

     # constant external input current
     I_e pA = 0 pA
   end

   internals:
     # time of peak conductance excursion after spike arrival at t = 0
     t_peak_E real = tau_syn_decay_E * tau_syn_rise_E * ln(tau_syn_decay_E / tau_syn_rise_E) / (tau_syn_decay_E - tau_syn_rise_E)
     t_peak_I real = tau_syn_decay_I * tau_syn_rise_I * ln(tau_syn_decay_I / tau_syn_rise_I) / (tau_syn_decay_I - tau_syn_rise_I)

     # normalisation constants to ensure arriving spike yields peak conductance of 1 nS
     g_E_const real = 1 / (exp(-t_peak_E / tau_syn_decay_E) - exp(-t_peak_E / tau_syn_rise_E))
     g_I_const real = 1 / (exp(-t_peak_I / tau_syn_decay_I) - exp(-t_peak_I / tau_syn_rise_I))

     RefractoryCounts integer = steps(t_ref) # refractory time in steps
   end

   input:
     spikeInh nS <- inhibitory spike
     spikeExc nS <- excitatory spike
     I_stim pA <- continuous
   end

   output: spike

   update:
     integrate_odes()
     if r != 0: # not refractory
       r =  r - 1
       V_m = V_reset # clamp potential
     elif V_m >= V_th:
       r = RefractoryCounts
       V_m = V_reset # clamp potential
       emit_spike()
     end
   end

 end

Characterisation

Synaptic response

iaf_cond_beta_nestml

f-I curve

iaf_cond_beta_nestml